忍者ブログ
自由発想・自由デザインの自作自転車キット
×

[PR]上記の広告は3ヶ月以上新規記事投稿のないブログに表示されています。新しい記事を書く事で広告が消えます。

6a01310f5127cf970c0120a8eb94b6970b-pi.jpeg およそ四半世紀以前に、石油ショックという大きな社会問題が発生しました。トイレットペーパーがないと大騒ぎをされた記憶があるものと思いますが如何でしょうか、その時代に執筆されたSCIENTIFIC AMERICAN (日本版は1973年5月号)の記事、S.S.ウイルソンさんがお書きになった「自転車の発達とテクノロジー」を読んだことがあります、その内容には 「自転車で移動する人間は、どの動物、どの機械よりも、物理的効率がよいらしい。」 と言う内容です、図を見ると明らかなように驚異的にエネルギー効率が高いと認められます、記事は古いが現在でも通用しますのでポイント部分を要約して紹介します。
PR
e005153c.jpeg走行に必要な動力は走行抵抗を上回る力が作用して走ることが出来ます。その内訳を計算するための因子は空気抵抗と転がり抵抗と登坂抵抗および伝動損失の和になります。
このうち空気抵抗、転がり抵抗と伝動損失は動力損失となるので小さくすることが望ましいといえます。必要とする動力は速度が速なると空気抵抗は速度の2乗の割合が大きくなります。

3次元形状のコンポジットパーツ成形手法の概略以下のようなものである。

1.CADモデルからカッタパスを生成
発砲樹脂のブロックを5軸MCを用いたボールエンドミル加工で、凸型を削り出す。この樹脂に表面硬化処理を施して耐熱性の無いマスタモデルを製作。

2.マスタモデルにGFRPあるいはCFRPを積層
凹型のシェルをつくる。ここでツールと呼ばれ、耐熱性のある対象物の成形型。

3.ツールに、アウタシェル用のCFRPプリプレグ、フィルム接着
ハニカム(アラミドが多い)、フィルム接着剤、インナシェルCFRPプリプレグの順に張り積層。

4.耐熱性のあるナイロンフィルムを積層物にかぶせる
シール剤により目止めする。ナイロンフィルム上に設けたバルブにゴムホースをつなぎ、真空ポンプにより吸引する。エア漏れが無いことを確認した後、加熱炉に入れて成形する。航空機などでは、加熱炉の代わりにオートクレーブを用い、加熱と同時に5気圧程度加圧する。

強くて軽い素材「CFRP」の低コスト化

航空機。「」と「次世代輸送系システム設計基盤技術開発プロジェクト」の中間評価報告書には下記のプロジェクトには「バータム法」というのがあります。この内容はわれわれにとっても参考になるので概略を紹介します。大掛かりな冷凍庫や加圧炉などに設備投資が必要なく小規模企業で実現できる工法の一つで、現在ではプリプレグで成形したものとほぼ同等の強度が出るようになりました、と報告されています。
片持ち梁の1次モードの固有振動数ωは(1.875/L)^2*√(ρA/EI)で求まります。
ここで、L:梁の長さ、ρ:密度、A:断面積、E:ヤング率、I:断面二次モーメント。
但し、ωの単位はrad/secですから、周波数に直します。

ωは角速度です。周波数に直すには、ω=2πf、ここに、πは円周率、fは周波数。

1.先端加重のない片持ち梁
固有値決定式 1+cos(λL)*cosh(λL)=0
λ1*L=1,875→ω1=λ1^2*√(EI/ρA)→(1.875/L)^2*√(EI/ρA)

2.先端に加重がある場合
固有値決定式 μ*λ*L=[1+cos(λL)*cosh(λL)]/[sin(λL)*cosh(λL)-cos(λL)*sinh(λL)]
μ=m/(ρAL)

ですので、加重なしのとき(μ=0)、固有値方程式は一致します。

連続体の固有振動数の計算式は、参考文献として機械力学の教科書、一例として「谷口修著、(改訂)振動工学(標準機械工学講座5、コロナ社)」があります。
42ef79b8.gif大型コンピューターでなければ利用できなかった有限要素法による数値解析が、パーソナルコンピューターの性能向上及び解析ソフトのユーザーインターフェースの向上によって身近なものになってきました。現在の製造業では、3次元CADで設計図を描き、引き続きコンピューター上で強度解析を行って試作に入ることが多くなりました。この強度解析によく用いられる数値解析手法が有限要素法(FEM) を用いた応力解析と呼ばれるものです。

自由発想・自由デザインを目的としたシステムを開発の一環に取り入れようとしています。自転車に必要なフレームの機能部品をいろんな種類について製作しておきます、あとは必要なものを取り出してパイプでジョイントすれば実用的に乗ることが可能なものになるのです。

デザインモデルを製作するための部品群とそれらを組み合わせた参考例のスタイルブック、そしてCADを利用して図面と構造力学計算が可能なシステムを検討しています。力学問題はFEMという有限要素法を活用します。数学が中心になりますが人手では困難な計算処理はコンピュータの発達により今ではPCを利用していろんなことができる時代です、誰もが簡単に有限要素法を利用できる時代です。
pipe1.jpg物性のひとつに疲労強度というものがある。これは破壊するまでに材料が静的引張強度以下の周期的負荷のストレスにどれだけ耐えるかという物性である。
アルミニウム系合金は鉄系合金に比べ、この疲れ強度が非常に小さい。鉄系合金には無限回数加えられても破壊が起きないという負荷レベルが存在する、これを疲れ強さと呼ぶが、アルミニウム系合金には疲れ強さがほとんどの存在しない。

つまり、どんなに小さな負荷でも何度も繰り返し荷重が加われば、アルミチューブのフレームはいつか破壊する。

img_0861.jpgこれは約10年経過した時発生した典型的な応力腐食割れの実例です、走行中に発生すると大変なことになります。
アルミニウムでフレームを作る際はこのアルミニウム最大の欠点とも言える疲れ強度の低さをいかに設計段階でカバーできるかが、フレーム設計の鍵である。

なるべく、アルミニウムの部位に応力がかからないように設計する。この考えに基づいてリトル・ダイアモンド・フレームは考案されている。
レモンのキャスターアングル(CA)を変化させたとき、ステアリンク特性がどのように変化するかアップライトなママチャリポジションでの予備テストを行いました。この結果から、いろんな参加者のデータを基に実験計画法で要因分析を行い主効果を求めること、および乗り手の交互作用の分析をしてみることで基本的な設計パラメタを取得する方向に向かうことができそうです。

90d4e18b.jpeg78度はハンドルが軽く手放しで走行ができます。
72から75度は乗りやすく手放しハンドルで走行ができます、この角度が私にとって最適です。65度も試して見ましたが手放しハンドルでの走行は難しくなります、この角度が常用限界と感じました。
60度は乗ることはできますが、ハンドルは重たく途中からの切れ込みが強くなります。54度も乗れないわけではありませんが、この設定で乗ることはありません。
この角度に付いては個人差があると考えられます、いろんな人のデータを集めて解析してみようと思いますのでご協力ください。
KitLegonの利用で基本的な走行特性を実験で確かめることができます。次はシートアングルの可変実験とシートポストのたわみについての適正値を確かめてみたいと思います。
また、高速走行をする場合を想定してドロップハンドルを取り付けたロードバイクポジションについても確かめる予定です。

65747da9.jpeg初期の設定はシートアングルが鋭角にセットしたものです。この状態で乗ると超前乗りスタイルで兎に角早く走れと督促されている雰囲気です。それはGraeme Obree選手の「スーパーマン」スタイルを連想します。このスタイルは記録達成後にUCIの規則改正され禁じ手となりました。競技規則に無縁な私とっては興味深い発見でした。キャスターアングルとともに検討対象です。


c7469a54.jpeg一般的な設定に変更しました、ごく当たり前の感覚で乗ることが出来ます、この角度については少し研究してみる必要性を感じました。高速走行を目的にするのであればシートアングルを立てることです。あたかも陸上競技で100m ダッシュの感覚になります。通常のポタリング目的ならばこの画像のように違和感の無いものがバランス的に見て良さそうです。
♥ Admin ♥ Write ♥ Res ♥
カレンダー
03 2024/04 05
S M T W T F S
1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30
最新コメント
アーカイブ
最新トラックバック
プロフィール
Copyright ©  KitLegon  All Rights Reserved.
* Material / Template by tsukika忍者ブログ [PR]